MBBR生物載體的同步硝化反硝化技術能夠有效地保持反應器中pH值穩定
發布時間:21-07-13 瀏覽
次

MBBR填料是一種近些年來興起的污水處理技術,被廣泛用于國內外污水處理,而在其中MBBR生物載體是此工藝中不可或缺的設備之一。MBBR生物載體的基本設計思想是能夠連續運行,不發生堵塞,無需反沖洗,水頭損失較小并且具有較大的比表面積。這可以通過生物膜生長在較小的載體單元上,載體在反應器中隨水流自由移動來實現。今天,小編要來和你聊聊關于MBBR生物載體硝化反硝化機理的問題,看看您都了解多少。
同步硝化反硝化脫氮技術(SND) 是在同一個反應器內同時產生硝化、反硝化和除碳反應。它突破了傳統觀點認為硝化和反硝化不能同時發生的認識,尤其是好氧條件下,也可以發生反硝化反應,使得同步硝化和反硝化成為可能。
反硝化過程消耗堿度,反硝化過程產生堿度,SND故能夠有效地保持反應器中pH值穩定,無需酸堿中和,無需外加碳源;節省反應器體積,縮短反應時間,通過降低硝態氮濃度可以減少二沉池污泥漂浮,因 SND成為生物脫氮的一個研究熱點。對于 SND 生物脫氮的可行性,目前有以下主要三種從不同角度出發得出的觀點:
宏觀環境角度:該觀點認為完全均勻混合狀態是不存在的,反應器內DO分布不均勻能夠形成好氧、缺氧、厭氧區域,在同一生物反應器缺氧/厭氧環境條件下可以發生反硝化反應,聯合區段內好氧環境中有機物去除和氨氮的硝化,SND是可以實現的。

微環境角度:該觀點認為微生物絮體內的缺氧微環境是形成 SND的主要原因,即由于氧的擴散(傳遞)限制,微生物絮體內存在溶解氧梯度,從而形成有利于實現同步硝化反硝化的微環境。
生物學角度:該觀點認為特殊微生物種群的存在被認為是發生SND的主要原因,有的硝化細菌除了能夠進行正常的硝化作用還能夠進行反硝化作用,有荷蘭學者分離出既可進行好氧硝化,又可進行好氧反硝化的泛養硫球菌;還有一些細菌彼此合作,進行序列反應,把氨轉化為氮氣,為在同一反應器在同一條件下完成生物脫氮提供了可能。
目前對生物脫氮的微生物學研究和解釋較多,但都不夠完善,對SND現象的認識仍在發展與探索之中。微環境理論是被普遍接受的,由于溶解氧梯度的存在,微生物絮體或生物膜的外表面溶解氧濃度高,以好氧 硝化菌及氨化菌為主;深入內部,氧傳遞受阻及外部溶解氧大量的消耗而產生缺氧區,反硝化菌為優勢菌種,故可導致同步硝化反硝化的發生。
我們通過上述資料可以了解到,為什么在同一個MBBR生物載體為什么會有不同的菌種共同存在的問題。但是,這套理論也存在一個缺陷,即有機碳源問題。有機碳源既是異養反硝化的電子供體,又是硝化過程的抑制物質,污水中的有機碳源在穿過好氧層時,首先被好氧氧化,處于缺氧區的反硝化菌由于得不到電子供體而降低了反硝化速率,可能影響SND的脫氮效率,故同步硝化反硝化的機理仍需要進一步完善。